Microwave atomic force microscopy imaging for nanometer-scale electrical property characterization.
نویسندگان
چکیده
We introduce a new type of microscopy which is capable of investigating surface topography and electrical property of conductive and dielectric materials simultaneously on a nanometer scale. The microwave atomic force microscopy is a combination of the principles of the scanning probe microscope and the microwave-measurement technique. As a result, under the noncontact AFM working conditions, we successfully generated a microwave image of a 200-nm Au film coating on a glass wafer substrate with a spatial resolution of 120 nm and a measured voltage difference of 19.2 mV between the two materials.
منابع مشابه
Electrical modes in scanning probe microscopy.
Scanning probe microscopy methods allow the investigation of a variety of sample surface properties on a nanometer scale, even down to single molecules. As molecular electronics advance, the characterization of electrical properties becomes more and more important. In both research and industry, films made from composite materials and lithographically structured elements have already reached st...
متن کاملWorkshops and Short Courses
One of most overlooked challenges in metrology is the microwave characterization of nanoscale materials and components. New electrical measurement methodologies and analyses are required to characterize the behavior of these new emerging materials and devices. Indeed, HF Instruments and methodologies are confronted with major limitations in terms of accuracy with respect to nanodevices. The mai...
متن کاملNanometer-scale temperature imaging for independent observation of Joule and Peltier effects in phase change memory devices.
This paper reports a technique for independent observation of nanometer-scale Joule heating and thermoelectric effects, using atomic force microscopy (AFM) based measurements of nanometer-scale temperature fields. When electrical current flows through nanoscale devices and contacts the temperature distribution is governed by both Joule and thermoelectric effects. When the device is driven by an...
متن کاملNanometer-Scale Patterning on PMMA Resist by Force Microscopy Lithography
Nanoscale science and technology has today mainly focused on the fabrication of nano devices. In this paper, we study the use of lithography process to build the desired nanostructures directly. Nanolithography on polymethylmethacrylate (PMMA) surface is carried out by using Atomic Force Microscope (AFM) equipped with silicon tip, in contact mode. The analysis of the results shows that the ...
متن کاملPerforming Enhanced Multiparameter Cell Imaging with Combined Fluorescence Lifetime Imaging Microscopy and Atomic Force Microscopy
optically encoded information about processes in live cells. Atomic force microscopy, on the other hand, provides nanometer-resolved surface topography and mechanical information, and has recently been expanded to nanometerresolved live cell mechanical property mapping. The integration of the two advanced live cell imaging techniques into one tool, with the capability to acquire simultaneous na...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Review of scientific instruments
دوره 81 12 شماره
صفحات -
تاریخ انتشار 2010